Skip to content

Bacterial cell membranes

Bacterial membranes and mitochondrial membranes are quite different. Bacterial membranes consists of a lot of specific proteins with specific bacterial functions giving protection and rigidity to the cell. I think anyone would agree that the mitochondrial membrane has few characteristics in common with the bacterial membrane, as you can see from the wiki entry. Observe that the bacterial membrane(s) are often referred to as cell walls, indicating their difference with eukaryotic cell membranes.

From wikipedia: As in other organisms, the bacterial cell wall provides structural integrity to the cell. In prokaryotes, the primary function of the cell wall is to protect the cell from internal turgor pressure caused by the much higher concentrations of proteins and other molecules inside the cell compared to its external environment. The bacterial cell wall differs from that of all other organisms by the presence of peptidoglycan (poly-N-acetylglucosamine and N-acetylmuramic acid), which is located immediately outside of the cytoplasmic membrane. Peptidoglycan is responsible for the rigidity of the bacterial cell wall and for the determination of cell shape. It is relatively porous and is not considered to be a permiability barrier for small substrates. While all bacterial cell walls (with a few exceptions e.g. intracellular parasites such as Mycoplasma) contain peptidoglycan, not all cell walls have the same overall structures. There are two main types of bacterial cell walls, Gram positive and Gram negative, which are differentiated by their Gram staining characteristics.

The Gram negative cell wall
Unlike the Gram positive cell wall, the Gram negative cell wall contains a thin peptidoglycan layer adjacent to the cytoplasmic membrane, which is responsible for the cell wall’s inability to retain the crystal violet stain upon decolourisation with ethanol during Gram staining. In addition to the peptidoglycan layer, the Gram negative cell wall also contains an additional outer membrane composed by phospholipids and lipopolysaccharides which face into the external environment. The highly charged nature of lipopolysaccharides confer an overall negative charge to the Gram negative cell wall. The chemical structure of the outer membrane lipopolysaccharides is often unique to specific bacterial strains (i.e. sub-species) and is responsible for many of the antigenic properties of these strains.

As a phospholipid bilayer, the lipid portion of the outer membrane is impermeable to charged molecules. However, channels called porins are present in the outer membrane that allow for passive transport of many ions, sugars and amino acids across the outer membrane. These molecules are therefore present in the periplasm, the region between the cytoplasmic and outer membranes. The periplasm contains the peptidoglycan layer and many proteins responsible for substrate binding or hydrolysis and reception of extracellular signals. The periplasm it is thought to exist as a gel-like state rather than a liquid due to the high concentration of proteins and peptidoglycan found within it. Because of its location between the cytoplasmic and outer membranes, signals received and substrates bound are available to be transported across the cytoplasmic membrane using transport and signalling proteins imbedded there.

This is also true for Rickettsia, the putative closest extant relative of mitochondria:

The structure of the typical rickettsia is very similar to that of Gram-negative bacteria. The typical envelope consists of three major layers: an innermost cytoplasmic membrane, a thin electron dense rigid cell wall and an outer layer. The outer layer resembles typical membranes in its chemical composition and its trilaminar appearance. The cell wall is chemically similar to that of Gram-negative bacteria in that it contains diaminopimelic acid and lacks teichoic acid. Intracytoplasmic invaginations of the plasma membrane (mesosomes) and ribosomes are also seen. There are no discrete nuclear structures. From here

Rickettsia typhi is a small Gram-negative rod bacteria. Therefore, it has an outer membrane and a thin murein layer. Murein is a strong polymer found in the cell walls of prokaryotes. Lipopolysaccharides which are unique to bacteria can be found on it’s outer membrane as well. From Microbewiki.

It seems to me that bacterial membranes have a lot of characteristics with few in common with mitochondria

Post a Comment

You must be logged in to post a comment.